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Abstract. Accurate reconstruction of complex dynamic scenes from just
a single viewpoint continues to be a challenging task in computer vision.
Current dynamic novel view synthesis methods typically require videos
from many different camera viewpoints, necessitating careful recording
setups, and significantly restricting their utility in the wild as well as in
terms of embodied AI applications. In this paper, we propose GCD, a
controllable monocular dynamic view synthesis pipeline that leverages
large-scale diffusion priors to, given a video of any scene, generate a syn-
chronous video from any other chosen perspective, conditioned on a set
of relative camera pose parameters. Our model does not require depth
as input, and does not explicitly model 3D scene geometry, instead per-
forming end-to-end video-to-video translation in order to achieve its goal
efficiently. Despite being trained on synthetic multi-view video data only,
zero-shot real-world generalization experiments show promising results
in multiple domains, including robotics, object permanence, and driving
environments. We believe our framework can potentially unlock pow-
erful applications in rich dynamic scene understanding, perception for
robotics, and interactive 3D video viewing experiences for virtual reality.

1 Introduction

Video generation has made tremendous progress in recent years. Results from
Sora [7], OpenAI’s recently released text-to-video generation model, have shown
that generating a high-quality video as long as one minute is possible. Following
the scaling curve, video models will most likely continue to improve in many
aspects. However, one essential functionality is still missing for these video mod-
els to be useful for many downstream applications – the ability to generate the
same dynamic scene from an arbitrary camera perspective.

In this paper, we aim to tackle the problem of dynamic novel view synthesis
(DVS) – given a video of a dynamic scene, we aim to generate a video of the same
scene from another viewpoint. Once we develop a solution for this problem, we
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Fig. 1: Spatial video translation of dynamic scenes. Given a single RGB video,
we propose a method that is capable of imagining what that scene would look like
from another viewpoint. Even for extreme camera transformations with large angles,
our approach synthesizes videos with rich visual details that are consistent with the
input, demonstrating advanced spatiotemporal reasoning capabilities.

can leverage it for several impactful use cases, such as generating novel view of a
live street scenario based on cameras mounted on an autonomous vehicle; seeing
a cluttered environment from a different viewpoint while a robot is performing
dexterous manipulation; and reliving a video recorded in the past from different
viewing angles to make it more immersive.

However, this task is naturally extremely ill-posed and challenging. While
yielding promising results, prior works typically addressed it by assuming either
that contemporaneous multi-viewpoint video is available [35,44,68,73,77], and/or
by imposing that the relative camera viewpoint changes must be small (i.e.
limited to just a handful of degrees) [30,66]. These restrictions make them vastly
insufficient for the aforementioned applications, which require in-the-wild novel
view synthesis pipelines with dramatic camera viewpoint changes.

Free-viewpoint synthesis from a single video requires prior knowledge be-
cause it is highly under-constrained. Modern video generative models, such as
Stable Video Diffusion [5], have learned rich priors for real-world dynamics, 3D
geometry, and camera motions, as they are trained on hundreds of millions of
video clips from the Internet. In this work, we propose an approach to capital-
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ize on these rich representations for the task of DVS. We curate pairs of videos
of dynamic scenes from simulation as training data, and apply them to steer a
pretrained video generative model by means of finetuning.

Qualitative and quantitative results demonstrate that our model achieves
state-of-the-art results on the task of monocular DVS, and generalizes effec-
tively to various out-of-distribution scenes, including real-world driving videos,
robot manipulation scenes, and other in-the-wild videos with heavy occlusion
patterns, as shown in Figure 1. Much like a camera dolly in film-making [71],
our approach essentially conceives a virtual camera that can move around with
up to six degrees of freedom, reveal significant portions of the scene that are oth-
erwise unseen, reconstruct hidden objects behind occlusions, all within complex
dynamic scenes, even when the contents are moving.

Our core contribution is the design and evaluation of a framework, Genera-
tive Camera Dolly (GCD), for learning to generate videos from novel viewpoints
of a dynamic scene, using an end-to-end video-to-video neural network. Section 2
provides a brief overview of related work. Section 3 introduces the approach in-
cluding the model architecture, and a description of how to achieve precise cam-
era control within the video diffusion model. Section 4 discusses training data,
benchmarks, and task details. Section 5 investigates important hyperparameter
decisions with regard to the conceptual implementation of camera control. Sec-
tion 6 provides both quantitative and qualitative evaluation of the system as
well as several examples of our model generalizing to out-of-distribution data.
We believe the ability to perform free-viewpoint video synthesis for a dynamic
scene from one video will have a significant impact on 3D/4D computer vision
research, as well as other related areas, including content creation, AR/VR, and
robotics.

2 Related Work

Dynamic scene reconstruction. The landscape of dynamic scene novel view syn-
thesis has been primarily dominated by techniques that rely on multiple syn-
chronized (i.e. contemporaneous) input videos [2, 4, 8, 28, 44, 68, 77, 82], which
limits their practical usage in real-world scenarios. The emergence of Neural Ra-
diance Fields (NeRF) [38] has catalyzed a revolution in dynamic view synthesis,
presenting state-of-the-art results in this domain [14, 29, 40, 41, 45, 59, 75]. Most
such methods represent scenes through time-evolving NeRFs, for handling com-
plicated, dynamic 3D scene motions in casual videos, for example in neural scene
flow fields [10,16,17,29,65,75].

A notable trend in recent advancements involves the synthesis of novel views
from a single camera perspective [17, 30, 66, 78]. DynIBaR adopts a volumetric
image-based rendering framework that, instead of encoding and compressing the
entire scene within a single representation (for example an MLP), aggregates
features from nearby views in a camera motion-aware manner, which enables
synthesizing novel views for long videos with uncontrolled camera paths [30].
DpDy leverages an image-based diffusion model to iteratively distill knowledge
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coming from diffusion priors into a hybrid 4D representation, consisting of a
static and dynamic NeRF [66].

It is worth noting that essentially all aforementioned methods optimize per-
scene representations independently of each other. Therefore, they are (1) largely
unable to share any knowledge between different reconstructions, such as to gen-
eralize to unseen environments; and (2) largely unable to infer or extrapolate
from incomplete observations, such as to recover fully occluded regions. More-
over, failure modes are often observed when the monocular input video lacks
effective multi-view cues, for example as enabled implicitly thanks to a moving,
especially a fast-moving, camera [17]. Exceptions include [61], where dynamic
scene completion is performed through a conditional neural field based on a
single, static RGB-D input video.

Video diffusion models. Recent work has rapidly improved the state of video gen-
eration models. Most generative models focus on diffusion-based approaches [5,
6,18,23,24,54], though important exceptions exist, particularly with autoregres-
sive training [70, 80]. Following recent work which shows image-based diffusion
models can be re-purposed for computer vision tasks including monocular depth
estimation [50], 3D reconstruction [33] and amodal segmentation [39], our work
adopts a public video diffusion model for dynamic view synthesis. We rely on
Stable Video Diffusion [5] as it generates high quality videos, and provides a
public image-to-video model checkpoint with code, although our framework can
generalize to any video generation approach.

3D and 4D generation. Most of the works enabling successful 3D generation via
generative models hence rely on channelling the representational power of 2D
diffusion models towards a single 3D representation that is iteratively optimized
over time, for example through score distillation [43]. This multiview 2D-to-3D
paradigm is exemplified by many text-to-3D and image-to-3D works [11, 22, 25,
31,33,42,43,63,67,69,74,83].

Emphasizing the temporal component, text-to-4D and image-to-4D papers
have begun appearing as well, although the results currently remain mostly
limited to animations of single objects or animals [1, 32, 55, 84]. Video-to-4D,
which is likely harder because every frame of the observation must be respected,
has remained less explored so far. In [61], a video-to-4D scene reconstruction
task and framework is proposed, although the model requires depth input, and
only works in narrow domains as it is trained from scratch.

Object permanence and amodal completion. The problem of reasoning about
the invisible parts of a scene has been studied extensively in the literature, but
so far almost exclusively from an object-centric perspective. For example, in the
image world, amodal completion [15,39,81] studies the problem of reconstructing
the occluded parts of an object based on its visible parts and the scene context.
However, these methods are naturally restricted to partial occlusions. In contrast,
for videos, some object tracking methods can capitalize on the temporal context
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Fig. 2: Method. Our model, GCD, embodies an end-to-end video translation pipeline
that maps an input video from any viewpoint into an output video from any other
perspective, with the objective of respecting all objects and dynamics occurring within
the observed dynamic scene, and faithfully reconstructing the corresponding visual
details from this novel viewpoint. The relative camera extrinsics matrix ∆E guides the
relationship between the two camera poses.

to successfully reason about the location [52, 57, 58] or even shape [62] of fully
occluded instances.

While abstracting the full complexity of a dynamic scene into a compact set
of objects allows these methods to be relatively data- and compute-efficient, it
also limits their applicability. In this work, we propose a more general approach
that is capable of revealing any parts of a scene, together with their dynamics,
similar to [61]. This includes not only occluded objects, but also ‘stuff’ regions [9],
such as natural or man-made surfaces, liquids, and so on.

We note that at least one concurrent work also tackles dynamic view synthe-
sis: in Exo2Ego [36], authors propose a framework that translates third-person
(exocentric) to first-person (egocentric) videos, incorporating priors for hand-
object interactions and focusing primarily on those scenarios.

3 Approach

First, we formally introduce the task of monocular dynamic novel view synthesis
from unconstrained video input. Let x ∈ RT×H×W×3 be RGB frames captured
from a single camera perspective, that encode the visual observation of a dynamic
scene of interest. We denote its associated camera extrinsics matrix as Esrc ∈
RT×3×4, and define Edst ∈ RT×3×4 to be the desired target camera extrinsics
matrix over time. Our model f is then tasked with predicting a video y ∈
RT×H×W×3, that plausibly depicts the same dynamic scene from the specified
new viewpoint. For simplicity, and without loss of generality, we assume that (1)
the output video is temporally synchronized with the input, and (2) the camera
intrinsics matrix K stays constant over time as well as across pose changes;
notably, the virtual camera for y assumes the same focal length as the actual
camera does for x.

Since novel view synthesis is an inherently under-constrained, challenging
problem, our approach will use existing large-scale video generative models. Dif-
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fusion models have been shown to excel at image-to-3D tasks [33, 34, 53, 74],
justifying our attempt to perform video-to-4D. Moreover, they have shown re-
markable zero-shot abilities in generating realistic, diverse videos from user-given
text descriptions and/or initial frames [3,5,24]. However, they are typically not
trained to accept video as a conditioning signal, and fine-grained control over
camera transformations is also not available by default. To overcome these ob-
stacles, we must make a few architectural changes.

3.1 Camera viewpoint control

Given a single RGB video x of a dynamic scene, our goal is to synthesize another
video y of the scene from a different viewpoint. Since large-scale video diffusion
models have been trained on hyper-scale data, their support of the natural video
distribution most likely covers a wide range of realistic scenes and viewpoints.
To this end, given a dataset of paired videos and their relative camera extrinsics
∆E = {E−1

src,t · Edst,t}Tt=1 ∈ RT×3×4 over time, we teach a latent diffusion model
f to learn controls over camera parameters within any video:

y = f (x,m(∆E)) (1)

Specifically, we modify Stable Video Diffusion (SVD) to accept a new form of
micro-conditioning, a term coined in [5], which is designed for the purpose of
communicating low-dimensional metadata (such as the desired frame rate of the
output video, and the amount of optical flow) to the network. We decompose ∆E
into a series of camera rotation matrices Rt ∈ SO(3) and translation matrices
Tt ∈ R3 over time, project this information through an MLP m, and add the
resulting embedding to the feature vectors at various convolutional layers placed
throughout the network, similarly to the concurrent work SV3D [63]. The diffu-
sion timestep, FPS, and motion strength are also passed to the network this way,
and are kept as is. To preserve the existing priors of SVD as much as possible,
we initialize the network weights based on the publicly available image-to-video
model checkpoint. The new embedder m that processes {(Rt, Tt)} is randomly
initialized with default parameters. After training the network end-to-end to
tackle this new task, the resulting model is capable of imagining unseen videos
from any chosen perspective, as illustrated in Figure 2.

3.2 Video conditioning

To accurately perform 4D dynamic scene completion, both low-level perception
(to analyze the visible shapes, appearance, etc.) and high-level understanding (to
infer the occluded regions, based on world knowledge as well as other observed
frames) of the input video is required. We adopt the same hybrid conditioning
mechanism as SVD [5], where the visual signal is processed in two ways. In case
of image-to-video, the first stream calculates the CLIP [46] embedding c(x0) of
the incoming image to condition the U-Net ϵ via cross-attention, and the second
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stream channel-concatenates the VAE-encoded image x0 with all frames of the
video sample ŷ that is being denoised by the diffusion model.

We keep this mechanism almost entirely intact when moving from the pre-
training to the finetuning stage, but we propose to simply substitute the first
frame x0 for the entire input video x from the source viewpoint, such that the
conditioning information now becomes a function of time. This ensures that our
model has the opportunity to watch how the dynamic scene unfolds over time,
and hence must learn to respect the dynamics and physics of the objects within.

In terms of architecture, the output video sample ŷ has contemporaneous
input frames from x attached to it for every video timestamp t, such that at
diffusion timestep u:

ŷu−1 = ϵ (ŷu ∥ x,m(∆E)) , (2)

In other words, the U-Net ϵ accepts input feature maps of dimensionality 2D ×
T × H

F × W
F , where D and F are the VAE embedding size and downsam-

pling factor respectively, and produces output feature maps of dimensionality
D × T × H

F × W
F that represent a less noisy sample.

Note that the SVD architecture consists of a factorized 3D U-Net that in-
terleaves spatial and temporal blocks, which establish correspondences between
features across locations (per frame), and across time (per spatial position) re-
spectively. Spatiotemporal attention can consequently take place between all
pairs of input and output frames, as well as any pair of regions within both
videos. Moreover, there are now T different CLIP embeddings {c(xt)} that ap-
propriately condition the U-Net layers at each matching frame.

4 Datasets

While the availability of multi-view video data has been growing [13, 19, 47, 51,
60, 61, 86], it is still relatively sparse compared to conventional image or video
datasets. In order to train and evaluate our model, we require a decent amount
of multi-view RGB videos from highly cluttered dynamic scenes. To this end, we
contribute two high-quality synthetic datasets, shown in Figures 3, 4, and 5 and
briefly described below.

4.1 Kubric-4D

We leverage the Kubric [20] simulator as our data source for generic multi-object
interaction videos, carrying a high degree of visual detail and physical realism.
Each scene contains between 7 and 22 randomly sized objects in total, with
roughly one-third of them spawned in mid-air at the beginning of the video
to encourage sophisticated dynamics. Complicated occlusion patterns arise very
frequently, making this dataset highly challenging for accurate novel view syn-
thesis. We generate 3,000 scenes of 60 frames each, at a frame rate of 24 FPS,
with RGB-D data rendered from 16 virtual cameras at a fixed set of poses.

Because the dynamic scene is sufficiently densely covered, we unproject all
the pixels from available viewpoints into a merged 3D point cloud per frame. As
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Fig. 3: Qualitative ablation study results for Kubric-4D. We show inputs, pre-
dictions, ablations, and ground truths. The input and output videos both consist of
T = 14 frames, but we show the first and last frame of the input video for conciseness,
and only the last frame of the output and target. Whereas the ablations tend to look
blurry with incorrect shape and/or appearance characteristics (especially for moving
objects), our main model (gradual, max 90°, finetuned) faithfully reconstructs the scene
layout and dynamics from the input video. In addition, it often hallucinates plausible
backgrounds in unseen regions.

a form of data augmentation, we then render them into videos from arbitrary
viewpoints according to camera trajectories that can be chosen and controllably
sampled depending on the exact training configuration.

4.2 ParallelDomain-4D

Since rich scene understanding and spatial reasoning skills are paramount for
maximizing situational awareness in the context of driving, we employ the state-
of-the-art data generation service ParallelDomain to produce complex, highly
photorealistic road scenes. The videos depict driving scenarios covering a wide
variety of locations, vehicles, persons, traffic situations, and weather conditions.
Here, we have 1,533 scenes available of 50 frames each, at a frame rate of 10 FPS,
with high-quality annotations for multiple modalities (RGB colors, semantic
categories, instance IDs, etc.) along with per-pixel ground truth depth rendered
from 19 virtual cameras at a fixed set of poses.

In our experiments, we train separate models for RGB view synthesis and
semantic view synthesis; the latter demonstrates that the predicted modality
need not be the same as the given modality.

Similarly as for Kubric-4D, we perform a unproject-and-reproject routine to
turn this multi-view video dataset into a pseudo-4D data source from which we
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Fig. 4: Qualitative ablation study results for ParallelDomain-4D. We show
inputs, predictions, ablations, and ground truths for both visual and semantic scene
completion. Our model excels at recovering the top-down viewpoint with high accuracy
in both modalities, despite the heavy occlusion patterns that often occur in driving
scenes. While the direct model performs almost as well as the gradual one, it tends to
introduce slightly more hallucination and discoloration of objects.

can render videos of the scene from arbitrary camera perspectives over time,
within certain pre-defined spatiotemporal bounds.

4.3 Task details

When training for the task of dynamic view synthesis on Kubric-4D, pairs of
input and output poses are randomly sampled within certain spherical coordi-
nate bounds (both in absolute terms and relative to each other), with the extra
condition that they are looking at the center of the 3D scene. Therefore, at in-
ference time, there are three effective degrees of freedom with regard to camera
control, similar to Zero-1-to-3 [33].

In case of ParallelDomain-4D, the input video and pose always correspond
to the ego vehicle’s forward-facing viewpoint, as if a sensor were mounted on the
front of the car. The output pose is a fixed top-down viewpoint with the ego
vehicle at the bottom center of the video, which enables gaining a much more
detailed overview of its surroundings.

5 Choice of camera trajectory

Our formulation of the dynamic view synthesis task in Section 3 is quite gen-
eral, so it is worth thinking about which specific instantiations of this conceptual
framework would be most effective in practice. Given arbitrary video inputs, our
goal is to devise a structured protocol for choosing relative camera trajectories
that both maximize the exploitation of knowledge contained within the pre-
trained SVD representation, as well as enable a detailed understanding of the
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Variant PSNR
(all) ↑

SSIM
(all) ↑

LPIPS
(all) ↓

PSNR
(occ.) ↑

SSIM
(occ.) ↑

Ours (direct, max 90°, scratch) 15.96 0.450 0.575 15.85 0.470
Ours (direct, max 180, scratch) 14.71 0.426 0.611 15.15 0.458
Ours (gradual, max 90°, scratch) 16.92 0.486 0.542 16.59 0.494
Ours (gradual, max 180°, scratch) 16.63 0.479 0.552 16.34 0.491

Ours (direct, max 90°, finetuned) 17.23 0.494 0.507 16.69 0.492
Ours (direct, max 180°, finetuned) 16.65 0.471 0.529 16.18 0.470
Ours (gradual, max 90°, finetuned) 17.88 0.521 0.486 17.33 0.514
Ours (gradual, max 180°, finetuned) 17.81 0.521 0.488 17.20 0.515

Table 1: Ablation study results on Kubric. We evaluate various versions of our
dynamic view synthesis model on only the last frame for fairness, i.e. to ensure that the
direct and gradual trajectory models are spatially aligned. See Figure 3 for qualitative
illustrations.

Variant PSNR
(all) ↑

SSIM
(all) ↑

LPIPS
(all) ↓

PSNR
(occ.) ↑

SSIM
(occ.) ↑

Ours (direct, scratch) 22.49 0.622 0.487 22.62 0.653
Ours (gradual, scratch) 22.73 0.632 0.467 22.76 0.664

Ours (direct, finetuned) 23.32 0.664 0.440 23.29 0.691
Ours (gradual, finetuned) 23.47 0.670 0.425 23.52 0.696

Table 2: Ablation study results on ParallelDomain in RGB space. We perform
visual scene completion, and evaluate various dynamic view synthesis models on only
the last frame for fairness, similarly to Table 1. See Figure 4 for qualitative illustrations.

dynamic scene observed at inference time to the fullest extent possible. Specif-
ically, we wish to synthesize views that reach as far as the opposite end of the
scene, for example, by rotating the azimuth angle up to 180°. This is consider-
ably more dramatic than what the state of the art in dynamic view synthesis is
typically capable of [10,17,30,73], and allows us to reveal large, formerly unseen
portions of the surroundings.

However, it turns out that opposing forces are at play. On one hand, we
wish to get to the destination camera pose “as fast as possible” (because the
scene could already be evolving and changing over time as we are watching it).
On the other hand, if the output video moves away from the source viewpoint

Variant mIoU
(all) ↑

mIoU
(occ.) ↑

Ours (direct, from scratch) 31.2% 28.6%
Ours (gradual, from scratch) 34.4% 32.1%

Ours (direct, finetuned) 36.7% 35.4%
Ours (gradual, finetuned) 39.0% 37.7%

Table 3: Ablation study re-
sults on ParallelDomain in se-
mantic space. We perform se-
mantic completion of the scene,
again similarly to Table 1. See Fig-
ure 4 for qualitative illustrations.
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too quickly, we might risk incurring a distribution misalignment due to the fact
that the image-to-video SVD model predominantly generates videos that start
at nearly the exact same spatial perspective as the given image. Moreover, the
camera generally does not move much throughout the video, typically performing
only minor panning motions and/or mild rotations.

To resolve this concern, we translate it into three questions: (1) where should
the output pose start ; (2) how fast should it be taught to move in-between
subsequent frames; and (3) how much does finetuning, i.e. borrowing priors
from SVD help (or hurt) in each case, versus training an identical network from
scratch? We investigate this by running comparative studies on both the Kubric-
4D and ParallelDomain-4D datasets. For each tested scene, we pick a source pose
Esrc,0 and a destination pose Edst,T . For our experiments, we assume a static
input camera, i.e., Esrc = {Esrc,0}Tt=1.

The results are shown in Tables 1, 2, and 3, and Figures 3 and 4. Here,
gradual means that the virtual camera pose corresponding to the output video
linearly interpolates between Esrc,0 and Edst,T from start to end (in spherical
coordinates), whereas direct implies that the generated video directly adheres
precisely to Edst,T at every frame without interpolation. For Kubric-4D, max
90° limits the relative horizontal (i.e. azimuth) angle variation between input
and output to ±90◦ at training time, whereas max 180° effectively allows for
synthesizing any 360°-surround viewpoint of the dynamic scene.

From this ablation study, we observe with Kubric-4D that (1) it is preferable
to gradually interpolate from source to destination pose than to immediately
jump there (+1.17 dB average PSNR improvement between direct and gradual);
(2) there exists a trade-off between the range of camera transformations the
model should be trained for, and how extreme of a rotation one wishes to be
able to achieve at most (+0.55 dB between max 180° and max 90°); and (3) it
is preferable to start from the SVD checkpoint that had been trained on large-
scale video rather than to train from random initialization, though not by a
particularly huge margin (+1.34 dB between scratch and finetuned).

We make consistent findings in the ParallelDomain-4D dataset, where grad-
ual, finetuned is the best model. For Kubric-4D, although gradual, max 90°,
finetuned and gradual, max 180°, finetuned are very close, we proceed with the
former in all further experiments, described below.

6 Experiments

In this section, we evaluate our monocular dynamic novel view synthesis frame-
work. We report numerical results on the test splits of our two in-domain datasets
(Kubric-4D and ParallelDomain-4D), comparing against several state-of-the-art
baselines, but additionally showcase promising qualitative results on in-the-wild
videos from various domains. For more results as well as animated visualizations,
please see gcd.cs.columbia.edu.

https://gcd.cs.columbia.edu/
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Fig. 5: Qualitative baseline comparison results for Kubric-4D. We show inputs,
predictions, baselines, and ground truths. Compared to baselines, our results depict the
scene layout and dynamics under the desired novel viewpoints with reasonable accuracy
overall and much fewer flickering artefacts.

6.1 Implementation details

Training. We adopt the SVD variant that predicts T = 14 frames, but due
to computational constraints, we downscale the input and output resolution
to W × H = 384 × 256. This allows us to scale the batch size up to 56 when
training with Kubric-4D on 7x A100 GPUs with 80 GB VRAM each. We finetune
all models for 10k iterations using the Adam optimizer, which takes roughly 3
days. On ParallelDomain-4D, we instead finetune models for 13k iterations with
an effective batch size of 24 through a gradient accumulation factor of 4 on 7x
A6000 GPUs with 48 GB VRAM each, which also takes roughly 3 days.

Inference. We generate conditional samples from the resulting diffusion model
by running the EDM sampler for 25 steps [26]. SVD originally employs classifier-
free guidance at test time with a guidance strength w that linearly increases as
a function of the video frame index (not the diffusion timestep) from start to
end within the range [1, 2.5] by default [5], but we found better performance by
adjusting this range to [1, 1.5] instead. Producing one output video takes roughly
10 seconds.

Evaluation metrics. Following related work in novel view synthesis [27,30,33,37,
49,66], for predictions in RGB space, we evaluate PSNR, SSIM, and LPIPS scores
and average the results across both video frames and test examples. For semantic
category predictions, following conventions in semantic segmentation [12,56,76,
85], we first calculate the average Intersection over Union (IoU) per category
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Fig. 6: Qualitative real-world generalization results. We show inputs and pre-
dictions on BridgeData V2 [64], TCOW Rubric [62], TRI-DDAD [21], and Berkeley
DeepDrive [79]. Despite being trained on synthetic data alone, our approach show sur-
prisingly strong generalization skills to a variety of real-world scenarios. For example,
on the top right, where a full occlusion occurs around the middle of the video, our
model faithfully predicts both the position and appearance of the invisible duck at the
last frame, demonstrating object permanence capabilities.

over the whole ParallelDomain test set, and then report the mean IoU (mIoU)
across categories.

Based on the ground truth depth information from the input viewpoint, it
is also possible to determine which pixels in the target viewpoint are visible or
hidden. In addition to the regular metrics (“all”), we therefore spatially mask the
videos to determine metrics for occluded regions only (“occ.”), which the model
essentially has to inpaint.

Even though our model accepts and predicts the same number of frames (T =
14), the first output frame for the gradual camera trajectory models (described
below) is spatially aligned with the first input frame. This implies that it could in
principle be solved by copying its pixels (except if the task involves switching to
another modality, for example semantic category prediction), so we exclude the
first frame from the evaluation to avoid inflating the metrics, instead averaging
only over the last T − 1 = 13 frames, which correspond to different extrinsics.

6.2 Baselines

We compare our final models against the state-of-the-art dynamic view synthe-
sis methods including HexPlane [10], 4D-GS [73] and DynIBaR [30], which all
perform per-scene optimization. While these baselines are capable of handling
videos with higher resolutions than ours, they are typically limited to much
smaller camera angle changes in the one- or low-number-of-views regime, and
inference runtimes are many orders of magnitude larger (e.g . hours vs. seconds).

In addition, we compare to two pretrained diffusion models Vanilla SVD [5]
and ZeroNVS [49] by adapting them for our task. For Vanilla SVD, we run the
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Method PSNR
(all) ↑

SSIM
(all) ↑

LPIPS
(all) ↓

PSNR
(occ.) ↑

SSIM
(occ.) ↑

HexPlane [10] 15.38 0.428 0.568 14.71 0.428
4D-GS [73] 14.92 0.388 0.584 14.55 0.392
DynIBaR [30] 12.86 0.356 0.646 12.78 0.358

Vanilla SVD [5] 13.85 0.312 0.556 13.66 0.326
ZeroNVS [49] 15.68 0.396 0.508 14.18 0.368

Ours 20.30 0.587 0.408 18.60 0.527

Reproject RGB-D* 12.51 0.537 0.416 - -

Table 4: Baseline comparison results on Kubric-4D. We evaluate gradual dy-
namic view synthesis models on all 13 output frames, and with a single RGB video as
input. We significantly outperform all baselines for both visible and occluded pixels.
*Uses privileged information, i.e. can access the ground truth depth map from the input viewpoint.

Method PSNR
(all) ↑

SSIM
(all) ↑

LPIPS
(all) ↓

PSNR
(occ.) ↑

SSIM
(occ.) ↑

Vanilla SVD [5] 12.88 0.400 0.658 13.96 0.466
ZeroNVS [49] 18.88 0.490 0.555 19.29 0.552

Ours 25.04 0.731 0.358 24.70 0.733

Reproject RGB-D* 17.66 0.459 0.441 - -

Table 5: Baseline comparison results on ParallelDomain in RGB space. We
perform visual scene completion, and evaluate gradual dynamic view synthesis on all
13 output frames, and with a single RGB video as input. We significantly outperform
all baselines for both visible and occluded pixels. *Uses privileged information, i.e. can access
the ground truth depth map from the input viewpoint.

original SVD model to generate videos based on the first input frame, without
any changes or finetuning. For ZeroNVS, which can generate novel views of
scenes based on a single image, we run it for all the input frames independently
to obtain the output video.

Finally, we compare to a simple geometric baseline (Reproject RGB-D), where
we reproject pixels from input frames to target viewpoints using the ground truth
depth maps, switching to the appropriate modality as needed. Here, the goal is
to study how much information is contained within the input video itself, if
precise per-pixel depth values were fully known (which is often not the case).

All methods observe the same monocular input video, and are evaluated on
the exact same set of randomly sampled output camera trajectories for fairness.

6.3 Results

We report quantitative results in Tables 4, 5, and 6, and show qualitative results
in Figures 5 and 4. On both datasets, our model outperforms baseline methods
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Method mIoU
(all) ↑

mIoU
(occ.) ↑

Ours 43.4% 38.2%

Reproject Sem-D* 37.3% -

Table 6: Baseline comparison re-
sults on ParallelDomain in se-
mantic space. We perform seman-
tic completion of the scene, still based
on a single RGB video as input. *Uses
privileged information, i.e. can access the
ground truth depth map and ground truth
semantic category of all input pixels.

by a large margin. Per-scene optimization methods (e.g., HexPlane) fail to re-
construct the 4D scene representation from a single input view, and thus the
rendered videos from novel viewpoints have severe artifacts. Vanilla SVD is able
to generate smooth videos but fails to follow the desired camera trajectories,
and does not incorporate content from later frames. ZeroNVS can synthesize
plausible individual frames from desired viewpoints, but the resulting videos are
not temporally coherent and do not respect the scene dynamics.

In contrast, although the correspondence of all objects between the input
and generated output videos is sometimes not perfectly clear, our model mostly
generates plausible videos that accurately depict the complex scene motion under
the desired novel viewpoint transformations. Apart from the evaluation on in-
domain datasets, we also showcase promising results on real-world in-the-wild
videos. As shown in Figure 6, our model sometimes generalizes quite well to
various domains including driving environments, daily indoor videos, and robotic
manipulation scenes.

7 Discussion

In this paper, we present a framework for dynamic novel view synthesis from a
monocular video by finetuning a large-scale pretrained video diffusion model [5]
on high-quality synthetic data. While we show promising results on real-world
in-the-wild videos, our model still struggles on significantly out-of-distribution
examples, e.g . videos with moving humans. Nevertheless, we believe this work
delivers meaningful progress in terms of gaining a rich, detailed understanding
of 4D scenes, and takes a solid first step towards enabling zero-shot dynamic
view synthesis from a monocular video.
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Generative Camera Dolly: Extreme Monocular
Dynamic Novel View Synthesis

Supplementary Material

A Overview

The appendix is structured as follows: in Section B, we analyze what the equiv-
alent number of source views given to HexPlane would have to be to match
our method’s performance, as well as our model’s performance as a function
of the geometric “difficulty” of the camera controls. In Section C, we elaborate
on implementation details in terms of the model architecture, how training is
done, how datasets are processed, how evaluations are performed, and how the
baselines are adapted. In Section D, we discuss failure cases.

To view video visualizations of all qualitative results corresponding to Figures
1, 3, 4, 5, 6 in the main paper, as well as Figure 11 in this supplementary docu-
ment, we recommend opening the attached MP4 files in each respective folder.
The input, predicted, and (when available) ground truth videos are concatenated
horizontally.

B More quantitative evaluations

B.1 Comparison to multi-view methods

Our method is able to synthesize novel views of a dynamic scene from just a
single-viewpoint input video. One other hand, the results from per-scene opti-
mization methods (e.g., HexPlane [10]) get better with an increasing number of
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Fig. 7: Comparative study over num-
ber of views. We plot the SSIM over the
test set as a function of the number of input
views that HexPlane uses for training. The
numbers are averaged over 20 scenes.
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forming dynamic view synthesis comes from
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Fig. 9: Spherical coordinate system. Adapted from [72].

input views. A natural question is that how many input views are needed for
those methods in order to obtain similar performance as compared to ours from
a single view. We try to answer this question by training HexPlane per scene
with K training views (i.e., K input videos), with K ∈ {1, 4, 8, 16, 32}. As shown
in Figure 7, our results (from a single input view) give rise to even better quality
than HexPlane’s results from 16 input views.

B.2 Error as a function of rotation angle

In Figure 8, we plot the average PSNR over the test set as a function of how
significantly the final destination (target) camera pose differs from the source
(input) camera pose. Specifically, we evaluate the Kubric-4D (gradual, max 180°,
finetuned) model on a sequence of horizontal rotations to the right of varying
amounts between 0° and 180°. The elevation angle θ is held constant at 10°, to
encourage obstructed objects from the input view, and the radius r at 15m.
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C Implementation details

C.1 Coordinate system

We use a spherical coordinate system, where (ϕ, θ, r) represents the azimuth
angle, elevation angle, and radial distance respectively. Note that as shown in
Figure 9, θ is the elevation angle as measured starting from the XY-plane, which
is not the same as the inclination angle as measured starting from the Z-axis.

C.2 Architecture

Figure 10 describes the model architecture in more detail. It is based on SVD [5],
which in turn is based on Video LDM [6], modified for camera pose condition-
ing. The T = 14 CLIP embeddings are fed to the network via multiple spatial
and temporal cross-attention blocks throughout the network. Separately, the
micro-conditioning mechanism takes place to pass the embeddings of the dif-
fusion timestep, frame rate, camera transformation, motion bucket value, and
conditioning augmentation strength to the network by summing it together with
feature channels at various residual blocks placed throughout the network, with
additional linear projections in-between to accommodate varying embedding
sizes. Concretely, assuming the camera always looks at the same location in
3D space for simplicity,4 the relative extrinsics matrix ∆E is parameterized as
(∆ϕ,∆θ,∆r). The angles are subsequently encoded with Fourier positional en-
coding before being embedded through an MLP. Note that the input camera
poses are not required to be known – only the desired relative transformation
should be given.

C.3 Data and training

In Kubric-4D, pairs of input and output video clips are always temporally syn-
chronized, but with T = 14 frame indices sampled randomly within the 60
available frames from the dataset. The original FPS is 24, and since the frame
stride is randomly uniformly sampled within [1, 4], the actual FPS when finetun-
ing therefore varies between 6 and 24. In ParallelDomain-4D, each scene has 50
frames available at 10 FPS, from which we randomly subsample clips but only
at a frame stride of either 1 or 2, which implies FPS values between 5 and 10.

In Kubric-4D, the camera pose respects the following bounds (both across
time and across input/output) with respect to the spherical coordinate system:
azimuth angle ϕ1...T ∈ [0◦, 360◦], elevation angle θ1...T ∈ [0◦, 50◦], radial distance
r1...T ∈ [12, 18].5 The target camera pose transformation for the default model
(max 90°) has a limited maximum transformation “strength” in the sense that
4 This is (0, 0, 1), i.e. 1m above the center of the ground plane, in Kubric-4D.
5 Since the dataset is synthetic and the radius r does not have an inherent meaning,

it is worth nothing that the average diameter of an object is 1.88m, and that all
objects are randomly spawned within these bounds in Euclidean coordinates: x ∈
[−7, 7], y ∈ [−7, 7], z ∈ [0, 7] (where Z is up).
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Fig. 10: Network architecture. Our model performs diffusion in latent space [32,48].
The input video is encoded by a VAE, and then channel-concatenated with the noisy
sample. At training time, the output video is estimated and supervised; at inference
time, multiple denoising steps are performed. In both cases, per-frame CLIP embed-
dings and other relevant pieces of information (frame rate, desired camera pose trans-
formation, and motion value) condition the U-Net in different ways.

from start to end, the azimuth, elevation, and radius all vary within the following
bounds: |∆ϕ| ≤ 90◦, |∆θ| ≤ 30◦, |∆r| ≤ 3. The horizontal field of view is 53.1°
everywhere.

For the more extreme view synthesis variant (max 180°), the bounds are:
ϕ1...T ∈ [0◦, 360◦], θ1...T ∈ [0◦, 90◦], r1...T ∈ [12, 18], |∆ϕ| ≤ 180◦, |∆θ| ≤ 60◦, |∆r|
≤ 3.

The trajectories are typically uniformly sampled, except for the elevation
angle θ; in this case, uniform sampling for the starting point happens in terms
of sin θ instead of the angle θ directly. This is done in order to ensure an equal
spread over (i.e. a uniform distribution on the surface of) the (relevant subset
of the) unit sphere. The input camera extrinsics Esrc is static, and the output
camera extrinsics Edst,t interpolates linearly over time in spherical coordinate
space.

In ParallelDomain-4D, the source viewpoint is a forward-facing camera mounted
on the virtual ego car at a fixed position of (1.6, 0, 1.55) in 3D world space,
where X points forward and Z points up. For simplicity, the camera pose is not
controllable – instead, the destination viewpoint is fixed at (−8, 0, 8), looking
forward and down at (5.6, 0, 1.55). To maximize the temporal smoothness of the
generated video, the camera trajectory is interpolated in Euclidean space, not

linearly but rather according to a sine wave function, i.e. following
1−cos( t

π(T−1) )
2 ,

assuming t increases step-wise from 0 to T − 1. The horizontal field of view is
85° everywhere.

Early on in our experiments, we observed that synchronizing the motion
bucket value, which conditions the model, with the strength of the camera trans-
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formation leads to better performance. Therefore, for Kubric-4D, we linearly
scale this value along with the magnitude of the relative camera rotation (specif-
ically, the L2 norm of (∆ϕ,∆θ)) where the minimum value corresponds to 0 and
the maximum value corresponds to 255. This indication of camera motion hints
the model that it should generate a video with a high degree of optical flow when
the relative angles are high and vice versa.

We keep conditioning augmentation [6] enabled with a noise strength of 0.02.

C.4 Loss

We apply a focal L2 loss function between the estimated and ground truth la-
tent feature maps, which focuses on the top fraction of embeddings incurring
the biggest mismatch. This fraction linearly decreases from 100% to 10% in
the first 5000 iterations, and then remains constant at 10%. In addition, for
semantic completion in ParallelDomain-4D, we weight the categories involving
vehicles (i.e. Bus, Car, Caravan/RV, ConstructionVehicle, Bicycle, Motorcycle,
OwnCar, Truck, WheeledSlow) and people (i.e. Animal, Bicyclist, Motorcyclist,
OtherRider, Pedestrian) to be respectively 3× and 7× as important as other
categories, by multiplying the loss values at the corresponding spatial positions
with the appropriate scaling factor before averaging. We observe that this strat-
egy tends to reduce false negative prediction rates, especially for visually smaller
objects occupying fewer pixels.

C.5 Evaluation

For each dataset separately, all models and all variants are evaluated on the
same test split. For each scene, we randomly sample a subclip within the available
video with T = 14 frames and a variable frame rate chosen within the same range
as during training time. Then, for Kubric-4D, four different target camera poses
(with angles up to azimuth ±90◦ for Kubric-4D) are randomly. To encourage
moderately difficult input videos with higher than average degrees of occlusion,
we set the starting elevation angle to be always θ1 = 5◦, but all other angles are
chosen randomly within the same ranges as during training. These randomization
parameters at test time are only chosen once and then fixed across all evaluation
experiments. We let probabilistic (i.e. diffusion) models (Ours, Vanilla SVD,
ZeroNVS) generate four samples for each of these trajectories, averaging results,
but the other methods (HexPlane, 4D-GS, DynIBaR) are only executed once for
each scene and for each set of output camera angles.

C.6 Baselines

Vanilla SVD [5]. Since Stable Video Diffusion’s last training stage involved
finetuning at a resolution of 1024×576, and changing the resolution at test time
gives rise to artefacts, it is probably optimal to evaluate the model at its original
resolution. We center crop and resize all input images and target videos as needed
to 1024 × 576 when evaluating this baseline. We keep the motion bucket at its
default value of 127.
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Fig. 11: Failure cases. We show inputs and predictions of real-world examples. Since
deformable objects are not present in our Kubric-4D finetuning set, our model occa-
sionally struggles with reconstructing their shape, appearance, and motion correctly.
This can sometimes lead to objects becoming vague or blending in with each other.
Similarly, videos in the bottom two rows are possibly related to them bordering on
being out-of-distribution with respect to ParallelDomain-4D.

ZeroNVS [49]. Like Zero-1-to-3 [33], ZeroNVS was trained only on square images
of resolution 256× 256. Similarly to Vanilla SVD, we center crop and resize all
input and ground truth frames accordingly. Moreover, since ZeroNVS learns
a scale-invariant means of transforming camera poses in a way that depends
on estimated depth maps, the translation component of the relative camera
extrinsics matrix E−1

src · Edst fed to the model can incur variable meanings with
respect to absolute 3D space depending on the observed scene. A scale parameter
is hence tuned visually for each video separately until the output qualitatively
aligns with the ground truth.

D Failure cases

Our model exhibits strong performance in many cases, but also fails to accurately
generalize to some real-world videos, especially those involving humans. In Fig-
ure 11, we show representative failure cases. In (a), while the general layout is
somewhat preserved, the people themselves become blurry. In (b), the robot arm
gets cut off when performing view synthesis from the top, presumably because
Kubric-4D does not contain robots or robotic motion patterns. In (c), the model
appears to be confused as to what the initial camera pose is, and interprets it
as a top-down rather than a sideways perspective of an aquarium, which leads
to a roll effect when rotating the azimuth. In (d), the highway sign gets missed.
In (e), the overpasses are not reconstructed, which seems to cause blurriness in
the rest of the prediction. In (f), (g), and (h), both shape and dynamics are not
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well-respected. In (i), the perceived depth of the large blue truck is wrong. In
(j), there are an unusually large amount of pedestrians crossing the street, which
the model groups into “cars”.
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